Abstract

Background:The ongoing fight with Novel Corona Virus, getting quick treatment, and rapid diagnosis reports have become an act of high priority. With millions getting infected daily and a fatality rate of 2%, we made it our motive to contribute a little to solve this real-world problem by accomplishing a significant and substantial method for diagnosing COVID-19 patients. Aim:The Exponential growth of COVID-19 cases worldwide has severely affected the health care system of highly populated countries due to proportionally a smaller number of medical practitioners, testing kits, and other resources, thus becoming essential to identify the infected people. Catering to the above problems, the purpose of this paper is to formulate an accurate, efficient, and time-saving method for detecting positive corona patients. Method:In this paper, an Ensemble Deep Convolution Neural Network model “CoVNet-19” is being proposed that can unveil important diagnostic characteristics to find COVID-19 infected patients using X-ray images chest and help radiologists and medical experts to fight this pandemic. Results:The experimental results clearly show that the overall classification accuracy obtained with the proposed approach for three-class classification among COVID-19, Pneumonia, and Normal is 98.28%, along with an average precision and Recall of 98.33% and 98.33%, respectively. Besides this, for binary classification between Non-COVID and COVID Chest X-ray images, an overall accuracy of 99.71% was obtained. Conclusion:Having a high diagnostic accuracy, our proposed ensemble Deep Learning classification model can be a productive and substantial contribution to detecting COVID-19 infected patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.