Abstract
The devastating impact of COVID-19 on the United States has been profound since its onset in January 2020. Predicting the trajectory of epidemics accurately and devising strategies to curb their progression are currently formidable challenges. In response to this crisis, we propose COVINet, which combines the architecture of Long Short-Term Memory and Gated Recurrent Unit, incorporating actionable covariates to offer high-accuracy prediction and explainable response. First, we train COVINet models for confirmed cases and total deaths with five input features, and compare Mean Absolute Errors (MAEs) and Mean Relative Errors (MREs) of COVINet against ten competing models from the United States CDC in the last four weeks before April 26, 2021. The results show COVINet outperforms all competing models for MAEs and MREs when predicting total deaths. Then, we focus on prediction for the most severe county in each of the top 10 hot-spot states using COVINet. The MREs are small for all predictions made in the last 7 or 30 days before March 23, 2023. Beyond predictive accuracy, COVINet offers high interpretability, enhancing the understanding of pandemic dynamics. This dual capability positions COVINet as a powerful tool for informing effective strategies in pandemic prevention and governmental decision-making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.