Abstract
To mitigate the spread of the current coronavirus disease 2019 (COVID-19) pandemic, it is crucial to have an effective screening of infected patients to be isolated and treated. Chest X-Ray (CXR) radiological imaging coupled with Artificial Intelligence (AI) applications, in particular Convolutional Neural Network (CNN), can speed the COVID-19 diagnostic process. In this paper, we optimize the data augmentation and the CNN hyperparameters for detecting COVID-19 from CXRs in terms of validation accuracy. This optimization increases the accuracy of the popular CNN architectures such as the Visual Geometry Group network (VGG-19) and the Residual Neural Network (ResNet-50), by 11.93% and 4.97%, respectively. We then proposed CovidXrayNet model that is based on EfficientNet-B0 and our optimization results. We evaluated CovidXrayNet on two datasets, including our generated balanced COVIDcxr dataset (960 CXRs) and the benchmark COVIDx dataset (15,496 CXRs). With only 30 epochs of training, CovidXrayNet achieves state-of-the-art accuracy of 95.82% on the COVIDx dataset in the three-class classification task (COVID-19, normal or pneumonia). The CovidXRayNet model, the COVIDcxr dataset, and several optimization experiments are publicly available at https://github.com/MaramMonshi/CovidXrayNet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.