Abstract

Purpose: Coronavirus disease 2019 (Covid-19), first reported in December 2019 in Wuhan, China, has become a pandemic. Chest imaging is used for the diagnosis of Covid-19 patients and can address problems concerning Reverse Transcription-Polymerase Chain Reaction (RT-PCR) shortcomings. Chest X-ray images can act as an appropriate alternative to Computed Tomography (CT) for diagnosing Covid-19. The purpose of this study is to use a Deep Learning method for diagnosing Covid-19 cases using chest X-ray images. Thus, we propose Covidense based on the pre-trained Densenet-201 model and is trained on a dataset comprising chest X-ray images of Covid-19, normal, bacterial pneumonia, and viral pneumonia cases. Materials and Methods: In this study, a total number of 1280 chest X-ray images of Covid-19, normal, bacterial and viral pneumonia cases were collected from open access repositories. Covidense, a convolutional neural network model, is based on the pre-trained DenseNet-201 architecture, and after pre-processing the images, it has been trained and tested on the images using the 5-fold cross-validation method. Results: The accuracy of different classifications including classification of two classes (Covid-19, normal), three classes 1 (Covid-19, normal and bacterial pneumonia), three classes 2 (Covid-19, normal and viral pneumonia), and four classes (Covid-19, normal, bacterial pneumonia and viral pneumonia) are 99.46%, 92.86%, 93.91 %, and 91.01% respectively. Conclusion: This model can differentiate pneumonia caused by Covid-19 from other types of pneumonia, including bacterial and viral. The proposed model offers high accuracy and can be of great help for effective screening. Thus, reducing the rate of infection spread. Also, it can act as a complementary tool for the detection and diagnosis of Covid-19.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.