Abstract
The COVID-19 pandemic continues to have a negative impact on the fitness and well being of the worldwide population. A vital step in tackling the COVID-19 is a successful screening of patients, with one of the key screening approaches being radiological imaging using chest radiography. This study aims to automatically identify patients with COVID-19 pneumonia using digital x-ray images of the chest while increasing the accuracy of the diagnosis using Convolution Neural networks (CNN). The data-set consists of 5380 X-ray images consisting of 1345 X-ray images each of COVID patients, Lung Opacity, Normal patients and Viral Pneumonia. In this study, CNN based model have been proposed for the detection of coronavirus pneumonia infected patients using chest X-ray radiography and gives a classification accuracy of 93.77% (training accuracy of 99.81% and validation accuracy of 95.45%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.