Abstract

In recent years, COVID-19 has been regarded as the most dangerous pandemic for several countries. On various social media platforms, such as Twitter, Facebook, and Instagram, a variety of rumours, hypes, and news are published. This might have a detrimental impact on people’s life. As a result, social media platforms have always had a difficult time authenticating this fake information. Different machine learning (ML) and deep learning (DL) classifiers were used in this work to categorize the continuing impacts of tweets and forecast their after-effects. Support vector machine (SVM), random forest (RF), decision tree (DT), and k-nearest neighbor (KNN) were used for classification, while AdaBoost and convolutional neural network (CNN) were utilized for future effects. The tweets dataset from Kaggle was used to train the SVM, RF, KNN, and DT models, which were then assessed on multiple evaluation criteria such as accuracy, precision, recall, and F1-score, using a 70 : 30 ratio. The CNN and AdaBoost, on the other hand, have been taught to detect the mean square error, root mean square error, and mean absolute error. With 0.74 and 0.73 percent score out of 1, respectively, RF and SVM exhibit the best accuracy in impact when classifying the outcomes on the obtained dataset. In terms of a regression problem, CNN beat the ADA Regressor across the board.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.