Abstract

The end of 2019 was marked by reports of a previously unknown virus causing coronavirus disease 19 (COVID-19). With over 800 new daily hospitalizations at the peak in Los Angeles (LA) County, the potential for high use of COVID-19 treatment agents, remdesivir and dexamethasone, warranted a screening assessment of their fate and toxicity risk for aquatic organisms. We predicted environmental concentrations (PECs) using the ChemFate model and hospitalizations data and compared them to predicted ecotoxicity concentrations generated using Ecological Structure Activity Relationships (ECOSAR) to assess risk to potentially exposed organisms. The lowest predicted toxicity thresholds were between 2 and 11 orders of magnitude greater than the highest PECs for freshwater and saltwater. We conclude that had all eligible patients in LA County been given the recommended treatment regimen, exposure of aquatic organisms in regional water bodies to remdesivir, dexamethasone, and their evaluated metabolites would not be likely to be affected based on ECOSAR predictions. Conservative, protective assumptions were used for this screening analysis, considering limited toxicity information. Modeling tools thus serve to predict environmental concentrations and estimate ecotoxicity risks of novel treatment agents and can provide useful preliminary data to assess and manage ecological health risks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call