Abstract

The outbreak of coronavirus is spreading at an unprecedented rate to the human populations and taking several thousands of life all over the globe. In this paper, an extension of the well-known susceptible-exposed-infected-recovered (SEIR) family of compartmental model has been introduced with seasonality transmission of SARS-CoV-2. The stability analysis of the coronavirus depends on changing of its basic reproductive ratio. The progress rate of the virus in critical infected cases and the recovery rate have major roles to control this epidemic. Selecting the appropriate critical parameter from the Turing domain, the stability properties of existing patterns is obtained. The outcomes of theoretical studies, which are illustrated via Hopf bifurcation and Turing instabilities, yield the result of numerical simulations around the critical parameter to forecast on controlling this fatal disease. Globally existing solutions of the model has been studied by introducing Tikhonov regularization. The impact of social distancing, lockdown of the country, self-isolation, home quarantine and the wariness of global public health system have significant influence on the parameters of the model system that can alter the effect of recovery rates, mortality rates and active contaminated cases with the progression of time in the real world.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.