Abstract

<h3>Abstract</h3> Current treatment of triple negative breast cancer patients is hindered by a high incidence of chemoresistance (30-50%). The prevailing theory is that resistance and subsequent recurrence is driven by cancer stem cells. Unfortunately, the functional characterization of cancer stem cells at the molecular level is still incomplete. We show here, that within the canonical breast cancer stem cell population, a subset of cells characterized by high Notch1 expression possesses the tumor-initiating property associated with cancer stem cells. Moreover, the tumor initiating property of these high Notch1-expressing breast cancer stem cells is mediated by a cleavage independent Notch signaling pathway culminating in the repression of SIRT1. Of note, the Notch1-mediated repression of SIRT1 is required not only for tumor initiation, but also for chemoresistance in breast cancer stem cells. Strikingly, inhibition of SIRT1 obviates the requirement for Notch1, marking the first example of conferring cancer stem cell function by inhibiting the activity of a single protein. We also demonstrate that progenitor-like mammary epithelial cells, which possess both luminal and basal properties, are also characterized by high Notch1 expression and repression of SIRT1 via the non-canonical pathway. These findings provide the first functional mechanistic requirements for tumor initiation by breast cancer stem cells and suggest that activation of the non-canonical Notch1 pathway is hardwired into tumor-initiating progenitor cells and thus a prerequisite for tumor initiation. <h3>Statement of Significance</h3> We demonstrate that chemoresistant and tumor-initiating properties of breast cancer stem cells are driven by repression of SIRT1 via non-canonical Notch signaling, suggesting a novel therapeutic strategy for triple negative breast cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call