Abstract
As the COVID-19 ravaging through the globe, accurate forecasts of the disease spread are crucial for situational awareness, resource allocation, and public health decision-making. Alternative to the traditional disease surveillance data collected by the United States (US) Centers for Disease Control and Prevention (CDC), big data from Internet such as online search volumes also contain valuable information for tracking infectious disease dynamics such as influenza epidemic. In this study, we develop a statistical model using Internet search volume of relevant queries to track and predict COVID-19 pandemic in the United States. Inspired by the strong association between COVID-19 death trend and symptom-related search queries such as “loss of taste”, we combine search volume information with COVID-19 time series information for US national level forecasts, while leveraging the cross-state cross-resolution spatial temporal framework, pooling information from search volume and COVID-19 reports across regions for state level predictions. Lastly, we aggregate the state-level frameworks in an ensemble fashion to produce the final state-level 4-week forecasts. Our method outperforms the baseline time-series model, while performing reasonably against other publicly available benchmark models for both national and state level forecast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.