Abstract
Monitoring of prevalent airborne diseases such as COVID-19 characteristically involves respiratory assessments. While auscultation is a mainstream method for preliminary screening of disease symptoms, its utility is hampered by the need for dedicated hospital visits. Remote monitoring based on recordings of respiratory sounds on portable devices is a promising alternative, which can assist in early assessment of COVID-19 that primarily affects the lower respiratory tract. In this study, we introduce a novel deep learning approach to distinguish patients with COVID-19 from healthy controls given audio recordings of cough or breathing sounds. The proposed approach leverages a novel hierarchical spectrogram transformer (HST) on spectrogram representations of respiratory sounds. HST embodies self-attention mechanisms over local windows in spectrograms, and window size is progressively grown over model stages to capture local to global context. HST is compared against state-of-the-art conventional and deep-learning baselines. Demonstrations on crowd-sourced multi-national datasets indicate that HST outperforms competing methods, achieving over 90% area under the receiver operating characteristic curve (AUC) in detecting COVID-19 cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.