Abstract

Coronavirus (COVID-19) is an infectious disease that has spread across the world within a short period of time and is causing rapid casualties. The main symptoms of this virus are shortness of breath, fever, cough, and a sore throat. The virus is detected through samples, such as throat swabs and sputum, taken from people who meet the possible case definition and the results are usually obtained within a few hours or a day. The development of test kits to detect the COVID-19 virus is still an open research topic, and automated and faster diagnostic tools are needed. Recent studies have shown that biomedical images can be used for COVID-19 testing. This study proposes the hybrid use of pre-trained deep networks and the long short-term memory (LSTM) for the classification of COVID-19 from contrast-enhanced chest X-rays. In the proposed system, a transformation function is applied to X-ray images first. Then, the artificial bee colony (ABC) algorithm is used to optimize the parameters obtained from the transformation function. The pre-trained deep network models and LSTM are preferred to extract features from the contrast-enhanced chest X-rays. At the final stage, COVID-19, normal (healthy), and pneumonia chest X-ray are classified using softmax. To evaluate the performance of the proposed method, the "COVID-19 radiography" dataset, which is widely used in the literature, is preferred. From the proposed model, 98.97% accuracy, 98.80% precision, and 98.70% sensitivity rates are obtained. Experimental results reveal that the proposed model provides efficient results compared to other methods. Thanks to the application of ABC-based image enhancement, increased classification of 2.5% has been achieved against other state-of-the-art models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call