Abstract

Low-cost, reliable and quick screening diagnosis of coronavirus can be implemented on the basis of intelligent technologies for analyzing a set of signs and symptoms with solving the problem of pattern recognition in the basis of artificial neural networks. The high degree of coronavirus infection diagnostic procedure uncertainty, the vector dimension of input factor-symptoms, fuzzy conditioning and poor formalizability of the subject condition connection with these symptoms require appropriate analytical tools. An analysis of the problem and possible solutions allows justifying the feasibilit y of implementing screening diagnostics as a solution to the problem of nonlinear optimization in a multidimensional space of high-dimensional factors and states. Artificial neural networks with compulsory training on a representative sample were chosen as a tool for implementing the project. The proposed technology brings diagnostics of coronavirus infection closer to full automation, robotization and intellectualization of complex monitoring (diagnostic) systems as the most promising technology for pattern recognition in systems with a high degree of entropy and allows you to solve the problem at the lowest cost and required performance indicators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.