Abstract
The outbreak of novel coronavirus disease 2019, also called COVID-19, in Wuhan, China, began in December 2019. Since its outbreak, infectious disease has rapidly spread across the globe. The testing methods adopted by the medical practitioners gave false negatives, which is a big challenge. Medical imaging using deep learning can be adopted to speed up the testing process and avoid false negatives. This work proposes a novel approach, COVID-19 GAN, to perform coronavirus disease classification using medical image synthesis by a generative adversarial network. Detecting coronavirus infections from the chest X-ray images is very crucial for its early diagnosis and effective treatment. To boost the performance of the deep learning model and improve the accuracy of classification, synthetic data augmentation is performed using generative adversarial networks. Here, the available COVID-19 positive chest X-ray images are fed into the styleGAN2 model. The styleGAN model is trained, and the data necessary for training the deep learning model for coronavirus classification is generated. The generated COVID-19 positive chest X-ray images and the normal chest X-ray images are fed into the deep learning model for training. An accuracy of 99.78% is achieved in classifying chest X-ray images using CNN binary classifier model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.