Abstract
In recent years, the security of automotive Cyber-Physical Systems (CPSs) is facing urgent threats due to the widespread use of legacy in-vehicle communication systems. As a representative legacy bus system, the Controller Area Network (CAN) hosts Electronic Control Units (ECUs) that are crucial for the vehicles functioning. In this scenario, malicious actors can exploit the CAN vulnerabilities, such as the lack of built-in authentication and encryption schemes, to launch CAN bus attacks (e.g., suspension, injection, and masquerade attacks) with life-threatening consequences (e.g., disabling brakes). In this article, we present TACAN (Transmitter Authentication in CAN), which provides secure authentication of ECUs on the legacy CAN bus by exploiting the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">covert channels</i> , without introducing CAN protocol modifications or traffic overheads (no extra bits or CAN messages are used). TACAN turns upside-down the originally malicious concept of covert channels and exploits it to build an effective defensive technique that facilitates transmitter authentication via a centralized, trusted Monitor Node. TACAN consists of three different covert channels for ECU authentication: 1) the Inter-Arrival Time (IAT)-based, leveraging the IATs of CAN messages; 2) the Least Significant Bit (LSB)-based, concealing authentication messages into the LSBs of normal CAN data; and 3) a hybrid covert channel, exploiting the combination of the first two. In order to validate TACAN, we implement the covert channels on the University of Washington (UW) EcoCAR (Chevrolet Camaro 2016) testbed. We further evaluate the bit error, throughput, and detection performance of TACAN through extensive experiments using the EcoCAR testbed and a publicly available dataset collected from Toyota Camry 2010. We demonstrate the feasibility of TACAN and the effectiveness of detecting CAN bus attacks, highlighting no traffic overheads and attesting the regular functionality of ECUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dependable and Secure Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.