Abstract
Lifts of graph and map automorphisms can be described in terms of voltage assignments that are, in a sense, compatible with the automorphisms. We show that compatibility of ordinary voltage assignments in Abelian groups is related to orthogonality in certain {\cal Z}-modules. For cyclic groups, compatibility turns out to be equivalent with the existence of eigenvectors of certain matrices that are naturally associated with graph automorphisms. This allows for a great simplification in characterizing compatible voltage assignments and has applications in constructions of highly symmetric graphs and maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.