Abstract
We shall discuss the idea of finding all rational points on a curve \(\mathcal{C}\) by first finding an associated collection of curves whose rational points cover those of \(\mathcal {C}\). This classical technique has recently been given a new lease of life by being combined with descent techniques on Jacobians of curves, Chabauty techniques, and the increased power of software to perform algebraic number theory. We shall survey recent applications during the last 5 years which have used Chabauty techniques and covering collections of curves of genus 2 obtained from pullbacks along isogenies on their Jacobians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.