Abstract
Abstract Answering a question of Miklós Abért, we prove that an infinite profinite group cannot be the union of less than continuum many translates of a compact subset of box dimension less than 1. Furthermore, we show that it is consistent with the axioms of set theory that in any infinite profinite group there exists a compact subset of Hausdorff dimension 0 such that one can cover the group by less than continuum many translates of it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.