Abstract

In the present experiments, the monodisperse calcium carbonate nanoparticles obtained in the reactor (three-phase reaction) with rotating discs have been covered with α-cyclodextrin. Both pure CaCO3 nanoparticle and α-cyclodextrin-coated CaCO3 powders were deeply analysed by the use of the scanning electron microscope, the dynamic light scattering and the thermogravimetric method. The experimental data have allowed for determination of effective diameter of the obtained particles (aggregates of ca. 30 nm single crystals) and their size distribution (almost monodisperse—ca. 390 nm) as well as for distinction between α-cyclodextrin molecules present on calcite surface or free α-cyclodextrin molecules if presented in the sample. It was found that the nanometric CaCO3 obtained in the reactor with rotating discs can be covered with a maximum of 1.15% α-cyclodextrin monolayer. The maximal coverage of the CaCO3 calcite particles with α-cyclodextrin can be done by 24-h shaking of 50 mg nanometric calcium carbonate with 25 mg of 36.79 mM α-cyclodextrin aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.