Abstract
We continue to study the properties of covering mappings of metric spaces and present their applications to differential equations. To extend the applications of covering mappings, we introduce the notion of conditionally covering mapping. We prove that the solvability and the estimates for solutions of equations with conditionally covering mappings are preserved under small Lipschitz perturbations. These assertions are used in the solvability analysis of differential equations unsolved for the derivative.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.