Abstract
Let P be a set of n weighted points. We study approximation algorithms for the following two continuous facility-location problems. In the first problem we want to place m unit disks, for a given constant m≥1, such that the total weight of the points from P inside the union of the disks is maximized. We present algorithms that compute, for any fixed e>0, a (1−e)-approximation to the optimal solution in O(nlog n) time. In the second problem we want to place a single disk with center in a given constant-complexity region X such that the total weight of the points from P inside the disk is minimized. Here we present an algorithm that computes, for any fixed e>0, in O(nlog 2 n) expected time a disk that is, with high probability, a (1+e)-approximation to the optimal solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.