Abstract

Rough set theory is an efficient and essential tool for dealing with vagueness and granularity in information systems. Covering-based rough set theory is proposed as a significant generalization of classical rough sets. Matroid theory is a vital structure with high applicability and borrows extensively from linear algebra and graph theory. In this paper, one type of covering-based approximations is studied from the viewpoint of Eulerian matroids. First, we explore the circuits of an Eulerian matroid from the perspective of coverings. Second, this type of covering-based approximations is represented by the circuits of Eulerian matroids. Moreover, the conditions under which the covering-based upper approximation operator is the closure operator of a matroid are presented. Finally, a matroidal structure of covering-based rough sets is constructed. These results show many potential connections between covering-based rough sets and matroids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.