Abstract

Simple random coverage models, well studied in Euclidean space, can also be defined on a general compact metric space. By analogy with the geometric models, and with the discrete coupon collector's problem and with cover times for finite Markov chains, one expects a weak concentration bound for the distribution of the cover time to hold under minimal assumptions. We give two such results, one for random fixed-radius balls and the other for sequentially arriving randomly-centered and deterministically growing balls. Each is in fact a simple application of a different more general bound, the former concerning coverage by i.i.d. random sets with arbitrary distribution, and the latter concerning hitting times for Markov chains with a strong monotonicity property. The growth model seems generally more tractable, and we record some basic results and open problems for that model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call