Abstract

We have developed an experimental and analytical setup for thermal desorption spectroscopy of solid water films on surfaces. We obtain the coverage-dependent desorption kinetics of water molecules from a well-defined ultra-thin alumina/NiAl(110) surface in the coverage range of 0-2 monolayers. We use a novel deconvolution technique to eliminate the pumping delay of water vapor in the vacuum system, which has previously hindered the accurate estimation of desorption kinetic parameters, such as activation energy and pre-exponential factor. The coverage-dependent Arrhenius analysis reveals that the desorption activation energy decreases with increasing coverage in the sub-monolayer range, indicating that the water-water interaction is not attractive. We also find that the pre-exponential factor for the second layer is higher than that for the sub-monolayer. We explain this difference in terms of transition state theory and propose that entropic effects play a significant role in water desorption kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.