Abstract

In addition to the traditional TDM/FDM, the advanced television systems committee (ATSC) 3.0 next generation digital TV standard has adopted state-of-the-art coding and modulation, as well as the new layered division multiplexing (LDM) technology. The ATSC 3.0 system is able to provide higher data throughput, more robust reception, better spectrum efficiency, and flexible service combinations in one RF channel with different robustness and reception conditions. Due to the adoption of a two-layer LDM, the coverage for ATSC 3.0 is very different from the legacy one-transmitter-one-coverage ATSC 1.0 system. With the new enabling technologies, the ATSC 3.0 can greatly increase the coverage/service areas, reduce the distance between co-channel assignments, and introduce local program insertion and targeted advertisement. This paper addresses the ATSC 3.0 coverage and co-channel interference issues, by using the two-layer LDM technology with different operating parameters. Simulations demonstrate that, similar to the 4G long term evolution, the ATSC 3.0 co-channel assignment could be reduced to two times the service coverage radius. This means an improvement of the spectrum efficiency by up to four times in comparison with today’s system. It is also proved through simulations that significant TV program gains can be obtained with this new system. The deployment of single frequency networks can further improve the coverage and reduce the interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.