Abstract
Abstract Surface metrology systems are increasingly used for inspecting dimensional quality in manufacturing. The gauge of these measurement systems is often mounted as an end-effector on robotic systems to exploit the robots’ high degrees of freedom to reposition the gauge to different viewpoints. With this repositioning flexibility, a planning methodology becomes necessary in order to carefully plan the viewpoints, as well as the optimal sequence and quickest path to move the gauge to each viewpoint. This paper investigates coverage path planning for robotic single-sided dimensional inspection of free-form surfaces. Reviewing existing feasible state-of-the-art methodologies to solve this problem led to identifying an unexplored opportunity to improve the coverage path planning, specifically by replacing random viewpoint sampling strategy. This study reveals that a non-random targetted viewpoint sampling strategy significantly contributes to solution quality of the resulting planned coverage path. By deploying optimisation during the viewpoint sampling, an optimal set of admissible viewpoints can be obtained, which consequently significantly shortens the cycle-time for the inspection task. Results that evaluate the proposed viewpoint sampling strategy for two industrial sheet metal parts, as well as a comparison with the state-of-the-art are presented. The results show up to 23.8% reduction in cycle-time for the inspection task when using targetted viewpoints sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.