Abstract

Sensor networks pose a number of challenging conceptual and optimization problems such as location, deployment, and tracking. One of the fundamental problems in sensor networks is the calculation of the coverage. In Meguerdichian et al. (2001), it is assumed that the sensor has uniform sensing ability. We provide efficient distributed algorithms to optimally solve the best-coverage problem raised in the above-mentioned article. In addition, we consider a more general sensing model: the sensing ability diminishes as the distance increases. As energy conservation is a major concern in wireless (or sensor) networks, we also consider how to find an optimum best-coverage-path with the least energy consumption and how to find an optimum best-coverage-path that travels a small distance. In addition, we justify the correctness of the method proposed above that uses the Delaunay triangulation to solve the best coverage problem and show that the search space of the best coverage problem can be confined to the relative neighborhood graph, which can be constructed locally.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.