Abstract

In diverse application fields, the increasing requisitions of Wireless Sensor Networks (WSNs) have more and more research dedicated to the question of sensor nodes’ deployment in recent years. For deployment of sensor nodes, some key points that should be taken into consideration are the coverage area to be monitored, energy consumed of nodes, connectivity, amount of deployed sensors and lifetime of the WSNs. This paper analyzes the wireless sensor network nodes deployment optimization problem. Wireless sensor nodes deployment determines the nodes’ capability and lifetime. For node deployment in heterogeneous sensor networks based on different probability sensing models of heterogeneous nodes, the author refers to the organic small molecule model and proposes a molecule sensing model of heterogeneous nodes in this paper. DSmT is an extension of the classical theory of evidence, which can combine with any type of trust function of an independent source, mainly concentrating on combined uncertainty, high conflict, and inaccurate source of evidence. Referring to the data fusion model, the changes in the network coverage ratio after using the new sensing model and data fusion algorithm are studied. According to the research results, the nodes deployment scheme of heterogeneous sensor networks based on the organic small molecule model is proposed in this paper. The simulation model is established by MATLAB software. The simulation results show that the effectiveness of the algorithm, the network coverage, and detection efficiency of nodes are improved, the lifetime of the network is prolonged, energy consumption and the number of deployment nodes are reduced, and the scope of perceiving is expanded. As a result, the coverage hole recovery algorithm can improve the detection performance of the network in the initial deployment phase and coverage hole recovery phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call