Abstract

Coverage is a fundamental problem in sensor networks. Sensor coverage, which reflects how well a sensor network is monitored by sensors, is an important measure for the quality of service (QoS) that a sensor network can provide. In mobile sensor networks, the mobility of sensor nodes can be utilized to enhance the coverage of the network. Since the movement of sensor nodes will consume much energy, this mobility of sensor nodes should be properly managed by some pre-defined schemes or protocols. By noticing this issue, some existing works have proposed several movement-assisted sensor deployment schemes. These works assume that the target field is a 2-dimensional space. In this paper, we study a generalized case of this problem whereby the target field can be a space which ranges from 1-dimensional to 3-dimensional. Two variations of the movement-assisted sensor deployment problem with different optimization objectives were formulated. We identify a set of basic attributes which can be used as guidelines for designing movement-assisted sensor deployment schemes. Based on these attributes, we propose efficient algorithms for both variants of the movement-assisted sensor deployment problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.