Abstract

Decorating two-dimensional (2D) materials with transition-metal adatoms is an effective way to bring about new physical properties that are intriguing for applications in electronics and spintronics devices. Here, we systematically studied the coverage-dependent magnetic and electronic properties of graphene decorated by Co adatoms, based on first-principles calculations. We found that if the Co coverage is larger than 1/3[Formula: see text]ML, the Co atoms will aggregate to form a Co monolayer and then a van der Waals bilayer system between the Co monolayer and graphene forms. When the Co coverage is [Formula: see text][Formula: see text]ML, the Co adatom is spin-polarized with spin moment varying from 1.1 to 1.4[Formula: see text][Formula: see text]. The [Formula: see text] and [Formula: see text] orbitals of Co hybridize significantly with the [Formula: see text] bands of graphene, which generates a series of new bands in the energy range from [Formula: see text][Formula: see text]eV to 1[Formula: see text]eV with respect to the Dirac point of graphene. In most cases, the new bands near the Fermi level lead to topological states characterized by the quantum anomalous Hall effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.