Abstract
ABSTRACT Recent experiments show that the desorption energy of H2 on a diamond-like carbon surface depends on the H2 coverage of the surface. We aim to quantitatively explain the coverage dependent H2 desorption energy measured by the experiments. We derive a math formula to calculate an effective H2 desorption energy based on the encounter desorption mechanism. The effective H2 desorption energy depends on two key parameters, the desorption energy of H2 on H2 substrate and the ratio of H2 diffusion barrier to its desorption energy. The calculated effective H2 desorption energy qualitatively agrees with the coverage dependent H2 desorption energy measured by the experiments if the values of these two parameters in literature are used in the calculations. We argue that the difference between the effective H2 desorption energy and the experimental results is due to the lack of knowledge about these two parameters. So, we recalculate these two parameters based on experimental data. Good agreement between theoretical and experimental results can be achieved if these two updated parameters are used in the calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.