Abstract

Large-scale sensor networks are becoming more present in our life then ever. Such an environment could be a cellular network, an array of fire detection sensors, an array of solar receptors, and so on. As technology advances, opportunities arise to form large-scale cooperative systems in order to solve larger problems in an efficient way. As more large-scale systems are developed, there is a growing need to (i) measure the hardness of a given large-scale sensor network problem, (ii) compare a given system to other large-scale sensor networks in order to extract a suitable solution, (iii) predict the performance of the solution, and (iv) derive the value of each system property from the desired performance of the solution, the problem constraints, and the user’s preferences.The following research proposes a novel system term, the coverage density, to define the hardness of a large-scale sensor network. This term can be used to compare two instances of large-scale sensor networks in order to find the suitable solutions for a given problem. Given a coverage density of a system, one may predict the solution performance and use it jointly with the preference and the constraints to derive the value of the system’s properties.KeywordsSensor NetworkWireless Sensor NetworkLoad BalanceMultiagent SystemTsunami WaveThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.