Abstract

Using temperature-programmed desorption, supported by X-ray photoelectron spectroscopy and scanning tunneling microscopy, a comprehensive overview of the main reactions of 5,10,15,20-tetraphenyl-21H,23H-porphyrin (2HTPP) on Cu(111) as a function of coverage and temperature is obtained. Three reactions were identified: metalation with Cu substrate atoms, stepwise partial dehydrogenation, and finally complete dehydrogenation. At low coverage the reactions are independent of coverage, but at higher coverage metalation becomes faster and partial dehydrogenation slower. This behavior is explained by a weaker interaction between the iminic nitrogen atoms and the Cu(111) surface in the high-coverage checkerboard structure, leading to faster metalation, and the stabilizing effect of T-type interactions in the CuTPP islands formed at high coverage after metalation, leading to slower dehydrogenation. Based on the amount of hydrogen released and the appearance in STM, a structure of the partially dehydrogenated molecule is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.