Abstract

We investigate the impact of channel estimation on the performance of downlink random cellular networks. First, we derive a new closed-form expression for the coverage probability under certain practical conditions. We show that the coverage probability is dependent on the user and base station (BS) densities solely through their ratio for arbitrary pilot-training length. Next, we derive the optimal pilot-training length that maximizes the area spectral efficiency (ASE) in several asymptotic regimes, and capture the dependence of this optimal length on the ratio between the user and BS densities. The ASE loss due to training is shown to be less significant in small cell networks with a larger base station density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call