Abstract

Wireless networks are prone to interference due to their broadcast nature. In the design of most of the traditional networks, this broadcast nature is perceived as a performance-degrading factor. However, Physical Layer Network Coding (PNC) exploits this broadcast nature by enabling simultaneous transmissions from different sources and thereby enhances the performance of the wireless networks with respect to improvement in spectral efficiency, coverage, latency and security of the system. For fifth generation (5G) networks and beyond, massive multiple input multiple output (MIMO) is considered as a key physical layer technology. Thus, its combination with PNC can significantly enhance the performance of the network, facilitating capacity-coverage improvement, among other benefits. While the bit error rate performance of multiuser massive MIMO-PNC systems through linear detection has been investigated extensively, their coverage probability for a given target signal-to-noise ratio has not been explored yet. In this paper, we derive a closed form expression for coverage probability in PNC based multiuser massive MIMO systems employing zero-forcing equalization. Both theoretical and simulation results are provided for different number of users and antennas in the multiuser massive MIMO-PNC communications systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.