Abstract

Millimeter wave (mmWave) communication is a promising approach to satisfy the demanding high data rate requirement of next generation mobile communications. This paper studies the downlink coverage performance of mmWave cellular networks with beam alignment errors. An enhanced antenna model is adopted to model the directional antenna beamforming pattern, in which the mainlobe beamwidth and directivity gains can be expressed as functions of the number of elements in the antenna array. After deriving the probability density function (PDF) of distance between mobile station (MS) and its serving base station (BS), the directivity gain with beam alignment errors is obtained as a discrete random variable. Then, a computationally tractable expression is derived for the coverage probability of mmWave cellular networks. Numerical results indicate that small beam alignment errors will not deteriorate the coverage probability significantly. Moreover, when the beam alignment error is small enough, the coverage performance can be improved by increasing the number of elements in the antenna array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.