Abstract

Contemporary high-throughput experimental and surveying techniques give rise to ultrahigh-dimensional supervised problems with sparse signals; that is, a limited number of observations (n), each with a very large number of covariates , only a small share of which is truly associated with the response. In these settings, major concerns on computational burden, algorithmic stability, and statistical accuracy call for substantially reducing the feature space by eliminating redundant covariates before the use of any sophisticated statistical analysis. Along the lines of Pearson’s correlation coefficient-based sure independence screening and other model- and correlation-based feature screening methods, we propose a model-free procedure called covariate information number-sure independence screening (CIS). CIS uses a marginal utility connected to the notion of the traditional Fisher information, possesses the sure screening property, and is applicable to any type of response (features) with continuous features (response). Simulations and an application to transcriptomic data on rats reveal the comparative strengths of CIS over some popular feature screening methods. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.