Abstract

AbstractRandomized experiments are the gold standard for causal inference and enable unbiased estimation of treatment effects. Regression adjustment provides a convenient way to incorporate covariate information for additional efficiency. This article provides a unified account of its utility for improving estimation efficiency in multiarmed experiments. We start with the commonly used additive and fully interacted models for regression adjustment in estimating average treatment effects (ATE), and clarify the trade-offs between the resulting ordinary least squares (OLS) estimators in terms of finite sample performance and asymptotic efficiency. We then move on to regression adjustment based on restricted least squares (RLS), and establish for the first time its properties for inferring ATE from the design-based perspective. The resulting inference has multiple guarantees. First, it is asymptotically efficient when the restriction is correctly specified. Second, it remains consistent as long as the restriction on the coefficients of the treatment indicators, if any, is correctly specified and separate from that on the coefficients of the treatment-covariate interactions. Third, it can have better finite sample performance than the unrestricted counterpart even when the restriction is moderately misspecified. It is thus our recommendation when the OLS fit of the fully interacted regression risks large finite sample variability in case of many covariates, many treatments, yet a moderate sample size. In addition, the newly established theory of RLS also provides a unified way of studying OLS-based inference from general regression specifications. As an illustration, we demonstrate its value for studying OLS-based regression adjustment in factorial experiments. Importantly, although we analyse inferential procedures that are motivated by OLS, we do not invoke any assumptions required by the underlying linear models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call