Abstract

In ROC analysis, covariate adjustment is advocated when the covariates impact the magnitude or accuracy of the test under study. Meanwhile, for many large scale screening tests, the true condition status may be subject to missingness because it is expensive and/or invasive to ascertain the disease status. The complete-case analysis may end up with a biased inference, also known as "verification bias." To address the issue of covariate adjustment with verification bias in ROC analysis, we propose several estimators for the area under the covariate-specific and covariate-adjusted ROC curves (AUCx and AAUC). The AUCx is directly modeled in the form of binary regression, and the estimating equations are based on the U statistics. The AAUC is estimated from the weighted average of AUCx over the covariate distribution of the diseased subjects. We employ reweighting and imputation techniques to overcome the verification bias problem. Our proposed estimators are initially derived assuming that the true disease status is missing at random (MAR), and then with some modification, the estimators can be extended to the not missing at random (NMAR) situation. The asymptotic distributions are derived for the proposed estimators. The finite sample performance is evaluated by a series of simulation studies. Our method is applied to a data set in Alzheimer's disease research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.