Abstract

A construction of conservation laws and conserved quantities for perturbations in arbitrary metric theories of gravity is developed. In an arbitrary field theory, with the use of incorporating an auxiliary metric into the initial Lagrangian covariantized Noether identities are carried out. Identically conserved currents with corresponding superpotentials are united into a family. Such a generalized formalism of the covariantized identities gives a natural basis for constructing conserved quantities for perturbations. A new family of conserved currents and correspondent superpotentials for perturbations on arbitrary curved backgrounds in metric theories is suggested. The conserved quantities are both of pure canonical Noether and of Belinfante corrected types. To test the results each of the superpotentials of the family is applied to calculate the mass of the Schwarzschild-anti-de Sitter black hole in the Einstein-Gauss-Bonnet gravity. Using all the superpotentials of the family gives the standard accepted mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.