Abstract

We explore the properties of non-local effective actions which include gravitational couplings. Non-local functions originally defined in flat space can not be easily generalized to curved space. The problem is made worse by the calculational impossibility of providing closed form expressions in a general metric. The technique of covariant perturbation theory (CPT) has been pioneered by Vilkovisky, Barvinsky and collaborators whereby the effective action is displayed as an expansion in the generalized curvatures similar to the Schwinger-De Witt local expansion. We present an alternative procedure to construct the non-local action which we call non-linear completion. Our approach is in one-to-one correspondence with the more familiar diagrammatic expansion of the effective action. This technique moreover enables us to decide on the appropriate non-local action that generates the QED trace anomaly in 4D. In particular we discuss carefully the curved space generalization of ln □, and show that the anomaly requires both the anomalous logarithm as well as 1/□ term where the latter is related to the Riegert anomaly action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.