Abstract

A gauge field is usually described as a connection on a principal bundle. It induces a covariant derivative on associated vector bundles, sections of which represent matter fields. In general, however, it is not possible to define a covariant derivative on non-linear fiber bundles, i.e. on those which are not vector bundles. We definelogarithmic covariant derivatives acting on two special non-linear fiber bundles — on the principal bundle and on the local gauge group bundle. The logarithmic derivatives map from sections of these bundles to the sections of the local gauge algebra bundle. Some properties of the logarithmic derivatives are formulated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.