Abstract

We readdress the thermodynamic structure of geometrical relations on a generic null surface. Among three potential candidates, originated from different components of $R_{ab}$ along the null vectors for the surface (i.e. $R_{ab}q^a_cl^b$, $R_{ab}l^al^b$ and $R_{ab}l^ak^b$ where $q_{ab}$ is the projector on the null surface and $l^a$, $k^a$ are null normal and corresponding auxiliary vector of it, respectively), the first one leads to Navier-Stokes like equation. Here we devote our investigation on the other two members. We find that $R_{ab}l^al^b$, which yields the evolution equation for expansion parameter corresponding to $l^a$ along itself, can be interpreted as a thermodynamic relation when integrated on the two dimensional transverse subspace of the null hypersurface along with a virtual displacement in the direction of $l^a$. Moreover for a stationary background the integrated version of it yields the general form of Smarr formula. Although this is more or less known in literature, but a similar argument for the evolution equation of the expansion parameter corresponding to $k^a$ along $l^a$, provided by $R_{ab}l^ak^b$, leads to a more convenient form of thermodynamic relation. In this analysis, contrary to earlier approaches, the identified thermodynamic entities come out to be in covariant forms and also are foliation independent. Hence these can be applied to any coordinate system adapted to the null hypersurface. Moreover, these results are not restricted to any specific parametrisation of $k^a$ and also $k^a$ need not be hypersurface orthogonal. In addition, here any particular dynamical equation for metric is not being explicitly used and therefore we feel that our results are solely based on the properties of the null surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call