Abstract
This paper is an exposition of results contained in [2]. The purpose of [2] is to present a way of viewing of basic topology which unifies quite a few results and concepts previously seemed not related (quotient maps, product topology, subspace topology, separation axioms, topologies on function spaces, dimension, metrizability). The basic idea is that in order to investigate an unknown space X, one either maps known spaces to X or maps X to known spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematics and Mathematical Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.