Abstract
The best linear unbiased predictor (BLUP) is called a kriging predictor and has been widely used to interpolate a spatially correlated random process in scientific areas such as geostatistics. However, if an underlying random field is not Gaussian, the optimality of the BLUP in the mean squared error (MSE) sense is unclear because it is not always identical with the conditional expectation. Moreover, in many cases, data sets in spatial problems are often so large that a kriging predictor is impractically time-consuming. To reduce the computational complexity, covariance tapering has been developed for large spatial data sets. In this paper, we consider covariance tapering in a class of transformed Gaussian models for random fields and show that the BLUP using covariance tapering, the BLUP and the optimal predictor are asymptotically equivalent in the MSE sense if the underlying Gaussian random field has the Matérn covariance function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.