Abstract
Summary We present theoretical results on the random wavelet coefficients covariance structure. We use simple properties of the coefficients to derive a recursive way to compute the within- and across-scale covariances. We point out a useful link between the algorithm proposed and the two-dimensional discrete wavelet transform. We then focus on Bayesian wavelet shrinkage for estimating a function from noisy data. A prior distribution is imposed on the coefficients of the unknown function. We show how our findings on the covariance structure make it possible to specify priors that take into account the full correlation between coefficients through a parsimonious number of hyperparameters. We use Markov chain Monte Carlo methods to estimate the parameters and illustrate our method on bench-mark simulated signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.