Abstract

Asymptotic properties of a vector of length power functionals of random geometric graphs are investigated. Algebraic properties of the asymptotic covariance matrix are studied as the intensity of the underlying homogeneous Poisson point process increases. This includes a systematic discussion of matrix properties like rank, definiteness, determinant, eigenspaces or decompositions of interest. For the formulation of the results a case distinction is necessary. In the three possible regimes the respective covariance matrix is of quite different nature which leads to different statements. Stochastic consequences for random geometric graphs are derived.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.