Abstract

This paper generalizes the well-known covariance intersection algorithm for distributed estimation and information fusion of random vectors. Our focus will be on partially correlated random vectors. This is motivated by the restriction of the standard covariance intersection algorithm, which treats all random vectors with arbitrary cross correlations and the restriction of the classical Kalman filter, which requires complete knowledge of the cross correlations. We first give a result to characterize the conservatism of the standard covariance intersection algorithm. We then generalize the covariance intersection algorithm to two random vectors with a given correlation coefficient bound and show in what sense the resulting covariance bound is tight. Finally, we generalize the notion of correlation coefficient bound to multiple random vectors and provide a covariance intersection algorithm for this general case. Our results will make the already popular covariance intersection more applicable and more accurate for distributed estimation and information fusion problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.