Abstract
The construction of valid and flexible cross-covariance functions is a fundamental task for modeling multivariate space–time data arising from, e.g., climatological and oceanographical phenomena. Indeed, a suitable specification of the covariance structure allows to capture both the space–time dependencies between the observations and the development of accurate predictions. For data observed over large portions of planet earth it is necessary to take into account the curvature of the planet. Hence the need for random field models defined over spheres across time. In particular, the associated covariance function should depend on the geodesic distance, which is the most natural metric over the spherical surface. In this work, we propose a flexible parametric family of matrix-valued covariance functions, with both marginal and cross structure being of the Gneiting type. We also introduce a different multivariate Gneiting model based on the adaptation of the latent dimension approach to the spherical context. Finally, we assess the performance of our models through the study of a bivariate space–time data set of surface air temperatures and precipitable water content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.