Abstract

Improving estimation efficiency for regression coefficients is an important issue in the analysis of longitudinal data, which involves estimating the covariance matrix of the within-subject errors. In the balanced or nearly balanced setting, we can also regard the covariance matrix of the dependent errors as the bivariate covariance function evaluated at specific time points. In this paper, we compare the performance of the proposed regularized-covariance-function-based estimator and the conventional high-dimensional covariance matrix estimator of the within-subject errors. It shows that when the number p of the time points in each subject is large enough compared to the number n of the subjects, i.e., p≫n1/4logn, the estimation errors of the high-dimensional covariance matrix will be accumulated, therefore the error bound of the proposed regularized-covariance-function-based estimator will be smaller than that of the high-dimensional covariance matrix estimator in Frobenius norm. We also assess the performance of these two estimators for the incomplete longitudinal data. All the comparisons and theoretical results are illustrated using both simulated and real data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.